Aging Exacerbates Pressure-Induced Mitochondrial Oxidative Stress in Mouse Cerebral Arteries.

نویسندگان

  • Zsolt Springo
  • Stefano Tarantini
  • Peter Toth
  • Zsuzsanna Tucsek
  • Akos Koller
  • William E Sonntag
  • Anna Csiszar
  • Zoltan Ungvari
چکیده

Epidemiological studies demonstrate that in addition to the increased prevalence of hypertension in old patients, the deleterious cerebrovascular effects of hypertension (including atherosclerosis, stroke, and vascular cognitive impairment) are also exacerbated in elderly individuals. The cellular mechanisms by which aging and hypertension interact to promote cerebrovascular pathologies are not well understood. To test the hypothesis that aging exacerbates high pressure-induced mitochondrial oxidative stress, we exposed isolated segments of the middle cerebral arteries of young (3 months) and aged (24 months) C57BL/6 mice to 60 or 140 mmHg intraluminal pressure and assessed changes in mitochondrial reactive oxygen species production using a mitochondria-targeted redox-sensitive fluorescent indicator dye (MitoSox) by confocal microscopy. Perinuclear MitoSox fluorescence was significantly stronger in high pressure-exposed middle cerebral arteries compared with middle cerebral arteries of the same animals exposed to 60 mmHg, indicating that high pressure increases mitochondrial reactive oxygen species production in the smooth muscle cells of cerebral arteries. Comparison of young and aged middle cerebral arteries showed that aging exacerbates high pressure-induced mitochondrial reactive oxygen species production in cerebral arteries. We propose that increased mechanosensitive mitochondrial oxidative stress may potentially exacerbate cerebrovascular injury and vascular inflammation in aging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient Cerebral Ischemia Promotes Brain Mitochondrial Dysfunction and Exacerbates Cognitive Impairments in Young 5xFAD Mice

Alzheimer's disease (AD) is heterogeneous and multifactorial neurological disorder; and the risk factors of AD still remain elusive. Recent studies have highlighted the role of vascular factors in promoting the progression of AD and have suggested that ischemic events increase the incidence of AD. However, the detailed mechanisms linking ischemic insult to the progression of AD is still largely...

متن کامل

Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection

Recent studies demonstrate that aging exacerbates hypertension-induced cognitive decline, but the specific age-related mechanisms remain elusive. Cerebral microhemorrhages (CMHs) are associated with rupture of small intracerebral vessels and are thought to progressively impair neuronal function. To determine whether aging exacerbates hypertension-induced CMHs young (3 months) and aged (24 month...

متن کامل

Protective effects of erythropoietin against cuprizone-induced oxidative stress and demyelination in the mouse corpus callosum

Objective(s): Increasing evidence in both experimental and clinical studies suggests that oxidative stress plays a major role in the pathogenesis of multiple sclerosis. The aim of the present work is to investigate the protective effects of erythropoietin against cuprizone-induced oxidative stress. Materials and Methods: Adult male C57BL/6J mice were fed a chow containing 0.2 % cuprizone for 6 ...

متن کامل

Protective effect of crocin against d-galactose-induced aging in mice

Objective: Aging is a multifactorial phenomenon, which attribute to different diseases and abnormalities in living systems. Oxidative stress, which is an important factor in aging, exacerbates this process via different mechanisms. Crocin (CR), one of the active components of saffron showed strong antioxidant effects. In the present study, anti-aging property of crocin was investigated in mice....

متن کامل

Role of oxidative stress in the aortic constriction-induced ventricular hypertrophy in rat

Introduction:Severe abdominal aortic constriction above the renal arteries induces arterial hypertension above the stenotic site that is the cause of cardiac hypertrophy. Previous studies have shown that high blood pressure induces myocardial oxidative stress with conflicting results. In the present study, we assessed the effects of acute hypertension on the myocardial oxidative stress an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journals of gerontology. Series A, Biological sciences and medical sciences

دوره 70 11  شماره 

صفحات  -

تاریخ انتشار 2015